! File: submodule_diffstar_lorene_io.f90 ! Authors: Francesco Torsello (FT) !************************************************************************ ! Copyright (C) 2020-2023 Francesco Torsello * ! * ! This file is part of SPHINCS_ID * ! * ! SPHINCS_ID is free software: you can redistribute it and/or modify * ! it under the terms of the GNU General Public License as published by * ! the Free Software Foundation, either version 3 of the License, or * ! (at your option) any later version. * ! * ! SPHINCS_ID is distributed in the hope that it will be useful, * ! but WITHOUT ANY WARRANTY; without even the implied warranty of * ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * ! GNU General Public License for more details. * ! * ! You should have received a copy of the GNU General Public License * ! along with SPHINCS_ID. If not, see <https://www.gnu.org/licenses/>. * ! The copy of the GNU General Public License should be in the file * ! 'COPYING'. * !************************************************************************ SUBMODULE (diffstar_lorene) io !******************************************** ! !# This submodule contains the implementation of the ! methods of TYPE diffstarlorene that handle I/O (input/output) ! ! FT 05.11.2021 ! !******************************************** IMPLICIT NONE CONTAINS !-------------------! !-- SUBROUTINES --! !-------------------! MODULE PROCEDURE print_diffstar_properties !**************************************************** ! !# Print the parameters of the binary neutron ! stars' initial data computed by |lorene| ! ! FT 8.10.2020 ! !**************************************************** USE constants, ONLY: m2cm, kg2g USE utility, ONLY: k_lorene2cu, k_lorene2cu_pwp, & Msun_geo, km2m, & density_si2cu, zero, use_eos_from_id, & eos$poly, eos$pwpoly, eos$tabu$compose IMPLICIT NONE IF( this% angular_momentum == zero )THEN PRINT * PRINT *, " ** The parameters have not ben read yet. ", & "Call the SUBROUTINE read_diffstar_properties to read them." PRINT * STOP ELSE PRINT * PRINT *, " ** The parameters of the differentially rotating star are:" PRINT * PRINT *, " Baryonic mass = ", this% mass, " M_sun" PRINT *, " Gravitational mass = ", this% mass_grav, " M_sun" PRINT *, " Angular momentum = ", this% angular_momentum, " G M_sun^2 /c" PRINT *, " Surface area = ", this% surface_area, " M_sun^2", & this% surface_area*Msun_geo**2, " km^2" PRINT * PRINT *, " Radii: " PRINT *, " Areal (or circumferential) radius for the star in the", & " binary system [the one used in the", & " (gravitational)mass-(areal)radius diagrams",& " is for a TOV star], x direction:", & this% area_radius, " M_sun^geo = ", & this% area_radius*Msun_geo, " km", & this% r_circ, " M_sun^geo = ", & this% r_circ*Msun_geo, " km" PRINT *, " Mean radius = ", this% r_mean, " M_sun^geo" PRINT *, " Equatorial radius at phi=0 = ", this% r_eq, " M_sun^geo" PRINT *, " Equatorial radius at phi=pi/2 = ", this% r_eq_pi2, & " M_sun^geo" PRINT *, " Equatorial radius at phi=pi = ", this% r_eq_pi, " M_sun^geo" PRINT *, " Equatorial radius at phi=3pi/2 = ", this% r_eq_3pi2, & " M_sun^geo" PRINT *, " Polar radius = ", this% r_pole, " M_sun^geo" PRINT *, " Polar radius/(Equatorial radius at phi=0) = ", & this% r_ratio PRINT *, " Radius of the Innermost Stable Circular Orbit (ISCO) = ", & this% r_isco, " M_sun^geo" PRINT *, " Orbital frequency of the Innermost Stable Circular Orbit ", & "(ISCO) = ", this% f_isco, " M_sun^geo" PRINT *, " Specific energy of a test particle at the Innermost Stable ", & "Circular Orbit (ISCO) ", this% specific_energy_isco, & " c^2" PRINT *, " Specific angular momentum of a test particle at the ", & "Innermost Stable Circular Orbit (ISCO) ", & this% specific_angular_momentum_isco, " G M_sun /c" PRINT * PRINT *, " Hydro quantities at the center of the star: " PRINT *, " Central enthalpy = ", this% ent_center, " c^2" PRINT *, " Central baryon number density = ", this% nbar_center, & " (M_sun^geo)^{-3} =", & this% nbar_center/(MSun_geo*km2m*m2cm)**3, "cm^{-3}" PRINT *, " Central baryon mass density = ", this% rho_center, & " M_sun^geo (M_sun^geo)^{-3} =", & this% rho_center/density_si2cu*kg2g/(m2cm**3), "g cm^{-3}" PRINT *, " Central energy density = ", this% energy_density_center, & " M_sun^geo c^2 (M_sun^geo)^{-3}", & this% energy_density_center/density_si2cu*kg2g/(m2cm**3), & "g c^2 cm^{-3}" PRINT *, " Central specific energy = ", this% specific_energy_center, & " c^2" PRINT *, " Central pressure = ", this% pressure_center, & " M_sun^geo c^2 (M_sun^geo)^{-3}", & this% pressure_center/density_si2cu*kg2g/(m2cm**3), & "g c^2 cm^{-3}" PRINT * PRINT *, " Ratio T/|W| between the rotational kinetic energy and ", & "the gravitational binding energy: ", this% tsw PRINT *, " For axisymmetric configurations as this one, the ", & "threshold for dynamical bar-mode instability is T/|W|~0.25 ", & " [Masaru Shibata et al 2000 ApJ 542 453, ", & "https://arxiv.org/pdf/astro-ph/0005378.pdf]. See also ", & "[Manca et al., Classical and Quantum Gravity, 24, 171, ", & "https://arxiv.org/abs/0705.1826], ", & "Sec.3.3 in [Galeazzi et al., Astron Astrophys 541:A156, ", & "arXiv:1101.2664], and Sec.5.1.3 in ", & "[Paschalidis, V., Stergioulas, N., Rotating stars in ", & "relativity. Living Rev Relativ 20, 7 (2017), ", & "https://link.springer.com/article/10.1007%2Fs41114-017-0008-x]." PRINT * PRINT *, " Equations of state for star 1 (EOS1) = ", TRIM(this% eos) IF( this% eos_id == eos$poly )THEN ! If the EOS is polytropic PRINT *, " Parameters for EOS: " PRINT *, " Polytopic index gamma = ", this% gamma PRINT *, " Pressure coefficient = ",& this% kappa/k_lorene2cu( this% gamma ), & "rho_nuc c^2 / n_nuc^gamma = ", this% kappa, & "[pure number]" PRINT * ELSEIF( this% eos_id == eos$pwpoly )THEN ! If the EOS is piecewise polytropic PRINT *, " Parameters for EOS1: " PRINT *, " Number of polytropic indexes = ", this% npeos PRINT *, " Polytopic index gamma0 = ", this% gamma0 PRINT *, " Polytopic index gamma1 = ", this% gamma1 PRINT *, " Polytopic index gamma2 = ", this% gamma2 PRINT *, " Polytopic index gamma3 = ", this% gamma3 PRINT *, " Pressure coefficient for the crust (here from SLy) = ",& this% kappa0/k_lorene2cu_pwp( this% gamma0 ), & "rho_nuc c^2 / n_nuc^gamma0 = ", this% kappa0, & "[pure number]" PRINT *, " Pressure coefficient for the first polytrope = ",& this% kappa1/k_lorene2cu_pwp( this% gamma1 ), & "rho_nuc c^2 / n_nuc^gamma1", this% kappa1, & "[pure number]" PRINT *, " Pressure coefficient for the second polytrope = ",& this% kappa2/k_lorene2cu_pwp( this% gamma2 ), & "rho_nuc c^2 / n_nuc^gamma2", this% kappa2, & "[pure number]" PRINT *, " Pressure coefficient for the third polytrope = ",& this% kappa3/k_lorene2cu_pwp( this% gamma3 ), & "rho_nuc c^2 / n_nuc^gamma3", this% kappa3, & "[pure number]" PRINT *, " Base 10 exponent of the pressure at the first fiducial " & // "density (between gamma_0 and gamma_1) (dyne/cm^2)= ", & this% logP1 PRINT *, " Base 10 exponent of first fiducial density (g/cm^3) = ", & this% logRho0 PRINT *, " Base 10 exponent of second fiducial density (g/cm^3) = ",& this% logRho1 PRINT *, " Base 10 exponent of third fiducial density (g/cm^3) = ", & this% logRho2 PRINT * ELSEIF( this% eos_id == eos$tabu$compose )THEN ! If the EOS is tabulated PRINT * PRINT *, " ** Using tabulated CompOSE EOS" PRINT * IF(.NOT.use_eos_from_id)THEN PRINT *, " Equations of state = ", TRIM(this% eos_filename(1)) PRINT *, " Table located at: ", TRIM(this% eos_table) PRINT * PRINT * ENDIF ELSE PRINT *, "** ERROR in SUBROUTINE read_diffstar_properties in ", & "SUBMODULE diffstar_lorene@properties!", & " The equation of state is unknown!" STOP ENDIF ENDIF END PROCEDURE print_diffstar_properties END SUBMODULE io