! File: submodule_cauchy_convergence_test_shared_grid.f90 ! Authors: Francesco Torsello (FT) !************************************************************************ ! Copyright (C) 2020-2023 Francesco Torsello * ! * ! This file is part of SPHINCS_ID * ! * ! SPHINCS_ID is free software: you can redistribute it and/or modify * ! it under the terms of the GNU General Public License as published by * ! the Free Software Foundation, either version 3 of the License, or * ! (at your option) any later version. * ! * ! SPHINCS_ID is distributed in the hope that it will be useful, * ! but WITHOUT ANY WARRANTY; without even the implied warranty of * ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * ! GNU General Public License for more details. * ! * ! You should have received a copy of the GNU General Public License * ! along with SPHINCS_ID. If not, see <https://www.gnu.org/licenses/>. * ! The copy of the GNU General Public License should be in the file * ! 'COPYING'. * !************************************************************************ SUBMODULE (cauchy_convergence_test) shared_grid !******************************************** ! !# This submodule contains the implementation ! of the PROCEDURES in MODULE ! cauchy_convergence_test that find the ! shared grids ! ! FT 22.09.2022 ! !******************************************** IMPLICIT NONE CONTAINS MODULE PROCEDURE find_shared_grid_unknown_sol !*********************************************************** ! !# Find the grid points shared by the 3 grids used in the ! Cauchy convergence test, when the exact solution is not ! known. The ratio between the grid spacings is `num/den` ! ! @todo add computation that justifies the algorithm ! !*********************************************************** IMPLICIT NONE INTEGER:: nx INTEGER:: ny INTEGER:: nz INTEGER:: i, j, k DOUBLE PRECISION, DIMENSION(3):: point_medium DOUBLE PRECISION, DIMENSION(3):: point_fine nx= tpo_coarse% get_ngrid_x(ref_lev) ny= tpo_coarse% get_ngrid_y(ref_lev) nz= tpo_coarse% get_ngrid_z(ref_lev) nx= FLOOR( DBLE( nx - 1 )/den**2 ) + 1 ny= FLOOR( DBLE( ny - 1 )/den**2 ) + 1 nz= FLOOR( DBLE( nz - 1 )/den**2 ) + 1 IF( ALLOCATED(shared_grid) ) DEALLOCATE(shared_grid) ALLOCATE( shared_grid( nx, ny, nz, 3 ) ) !$OMP PARALLEL DO DEFAULT( NONE ) & !$OMP SHARED( tpo_coarse, tpo_medium, tpo_fine, ref_lev, & !$OMP shared_grid, den, num, nx, ny, nz ) & !$OMP PRIVATE( i, j, k, point_medium, point_fine ) DO k= 0, nz - 1, 1 DO j= 0, ny - 1, 1 DO i= 0, nx - 1, 1 shared_grid( 1 + i, 1 + j, 1 + k, : ) = & tpo_coarse% get_grid_point( 1 + INT(den**2)*i, & 1 + INT(den**2)*j, & 1 + INT(den**2)*k, ref_lev ) point_medium= tpo_medium% get_grid_point( 1 + INT(num*den)*i, & 1 + INT(num*den)*j, & 1 + INT(num*den)*k, ref_lev) point_fine = tpo_fine% get_grid_point( 1 + INT(num**2)*i, & 1 + INT(num**2)*j, & 1 + INT(num**2)*k, ref_lev ) IF( ABS(shared_grid(1+i,1+j,1+k, 1) - point_medium(1)) & /ABS(point_medium(1)) > tol & .OR. ABS(shared_grid(1+i,1+j,1+k, 1) - point_fine(1)) & /ABS(point_fine(1)) > tol & .OR. ABS(shared_grid(1+i,1+j,1+k, 2) - point_medium(2)) & /ABS(point_medium(2)) > tol & .OR. ABS(shared_grid(1+i,1+j,1+k, 2) - point_fine(2)) & /ABS(point_fine(2)) > tol & .OR. ABS(shared_grid(1+i,1+j,1+k, 3) - point_medium(3)) & /ABS(point_medium(3)) > tol & .OR. ABS(shared_grid(1+i,1+j,1+k, 3) - point_fine(3)) & /ABS(point_fine(3)) > tol & )THEN PRINT * PRINT *, "** ERROR in SUBROUTINE find_shared_grid_unknown_sol! ", & "The grid functions in the Cauchy ", & "convergence test are not evaluated at the ", & "same grid point at (i,j,k)=(", i, j, k, ")." PRINT *, shared_grid(1+i,1+j,1+k, 1), point_medium(1), point_fine(1) PRINT *, shared_grid(1+i,1+j,1+k, 2), point_medium(2), point_fine(2) PRINT *, shared_grid(1+i,1+j,1+k, 3), point_medium(3), point_fine(3) PRINT * STOP ENDIF ENDDO ENDDO ENDDO !$OMP END PARALLEL DO END PROCEDURE find_shared_grid_unknown_sol MODULE PROCEDURE find_shared_grid_known_sol !*********************************************************** ! !# Find the grid points shared by the 2 grids used in the ! Cauchy convergence test, when the exact solution is ! known. The ratio between the grid spacings is `num/den` ! ! @todo add computation that justifies the algorithm ! !*********************************************************** IMPLICIT NONE INTEGER:: nx INTEGER:: ny INTEGER:: nz INTEGER:: i, j, k DOUBLE PRECISION, DIMENSION(3):: point_fine nx= tpo_coarse% get_ngrid_x(ref_lev) ny= tpo_coarse% get_ngrid_y(ref_lev) nz= tpo_coarse% get_ngrid_z(ref_lev) nx= FLOOR( DBLE( nx - 1 )/den ) + 1 ny= FLOOR( DBLE( ny - 1 )/den ) + 1 nz= FLOOR( DBLE( nz - 1 )/den ) + 1 IF( ALLOCATED(shared_grid) ) DEALLOCATE(shared_grid) ALLOCATE( shared_grid( nx, ny, nz, 3 ) ) !$OMP PARALLEL DO DEFAULT( NONE ) & !$OMP SHARED( tpo_coarse, tpo_fine, ref_lev, & !$OMP shared_grid, den, num, nx, ny, nz ) & !$OMP PRIVATE( i, j, k, point_fine ) DO k= 0, nz - 1, 1 DO j= 0, ny - 1, 1 DO i= 0, nx - 1, 1 shared_grid( 1 + i, 1 + j, 1 + k, : ) = & tpo_coarse% get_grid_point( 1 + INT(den)*i, & 1 + INT(den)*j, & 1 + INT(den)*k, ref_lev ) point_fine= tpo_fine% get_grid_point( 1 + INT(num)*i, & 1 + INT(num)*j, & 1 + INT(num)*k, ref_lev ) IF( ABS(shared_grid(1+i,1+j,1+k, 1) - point_fine(1)) & /ABS(point_fine(1)) > tol & .OR. ABS(shared_grid(1+i,1+j,1+k, 2) - point_fine(2)) & /ABS(point_fine(2)) > tol & .OR. ABS(shared_grid(1+i,1+j,1+k, 3) - point_fine(3)) & /ABS(point_fine(3)) > tol & )THEN PRINT * PRINT *, "** ERROR in SUBROUTINE find_shared_grid_known_sol! ", & "The grid functions in the Cauchy ", & "convergence test are not evaluated at the ", & "same grid point at (i,j,k)=(", i, j, k, ")." PRINT *, shared_grid(1+i,1+j,1+k, 1), point_fine(1) PRINT *, shared_grid(1+i,1+j,1+k, 2), point_fine(2) PRINT *, shared_grid(1+i,1+j,1+k, 3), point_fine(3) PRINT * STOP ENDIF ENDDO ENDDO ENDDO !$OMP END PARALLEL DO END PROCEDURE find_shared_grid_known_sol END SUBMODULE shared_grid