
Tuesday 25th April, 2023

SPHINCS_ID
Smoothed Particle Hydrodynamics IN Curved Spacetime – Initial Data builder

A modular, object-oriented, OMP parallelized Fortran 2018 code to
produce binary neutron stars initial data for SPHINCS_BSSN

User Manual for v2.0 Francesco Torsello

Contents

1 Introduction 1
1.1 Description of SPHINCS_ID . 1
1.2 Documentation of SPHINCS_ID . 3

2 Compilation of the codes 3
2.1 Compiling LORENE . 3
2.2 Compiling Kadath . 4
2.3 Compiling SPHINCS_ID . 4

3 Using the codes 6
3.1 Producing binary neutron star spectral initial data with LORENE 6
3.2 Producing differentially rotating star spectral initial data with LORENE . . 9
3.3 Producing binary neutron star spectral initial data with FUKA 10
3.4 Producing initial data with SPHINCS_ID 10

3.4.1 Producing initial data for two TOV stars in a Newtonian binary
system, with construct_newtonian_binary.x 11

3.5 Running a Cauchy convergence test . 12
3.6 Producing the parameter file par_eos.d for LORENE 12

1 Introduction

1.1 Description of SPHINCS_ID

SPHINCS_ID is a modular, object-oriented, OMP parallelized Fortran 2018 code to produce
initial data to be evolved in time with the General Relativistic, Lagrangian Hydrodynamics,
Fortran 2018 code SPHINCS_BSSN [1], and the Newtonian, Lagrangian Hydrodynamics,
Fortran code MAGMA2 [2].

Presently, SPHINCS_ID does not solve any equations for the initial data, but acts as an
interface between an initial data solver and SPHINCS_BSSN or MAGMA2. It reads the data
computed by the solver and produces the SPH and BSSN ID to be read and evolved in
time with SPHINCS_BSSN or MAGMA2. Currently, it produces initial data for:

i. binary neutron star mergers and differentially rotating stars, using the data computed
by the solvers within the C++ library LORENE [3, 4]

ii. binary systems of neutron stars, using the data computed by the FUKA solvers within
the C++ library Kadath [5, 6]

iii. data on a Cartesian, uniform grid, representing a generic physical system

1

iv. Newtonian binary systems of neutron stars and white dwarfs, using the data computed
by the TOV solver within SPHINCS_BSSN; in other words, two TOV stars are placed
on an orbit given by the Newtonian 2-body problem

The modular and hierarchical structure of the code makes it easy to extend it to be able
to set up initial data for other types of physical systems and other formulations of the
Einstein equations (EE).

In SPHINCS_ID, each class is declared in its own module, and the implementations
of its type-bound procedures are written in submodules. The present version consists
of 3 main base classes: idbase, particles and tpo. idbase is an abstract class that
represents a generic ID for any physical system (binary neutron star, differentially rotating
star, ejecta, triple system of stars, etc. . .). The particles class represents the SPH
particle distribution and its properties. The tpo class represents the 3+1 decomposition of
spacetime. The constructors of particles and tpo need an idbase object as one of their
arguments, meaning that there cannot be objects of type particles or tpo without at
least one idbase object. This makes sense since there cannot be particles if there is no fluid
to model, and there cannot be a 3+ 1 decomposition of the spacetime without a spacetime.
The tpo class is abstract due to the following reason. The Einstein equations (EE), in
numerical relativity (NR), can be posed as a Cauchy problem using different formulations.
SPHINCS_ID should be able to easily and safely allow the programmer to implement such
formulations, and the user to choose between them. tpo is meant to include all the
properties shared by all 3 + 1 formulations of the EE, and the properties of the standard
3 + 1 formulation. A specific formulation is to be represented by a class that extends
tpo. Version v2.0 of SPHINCS_ID has only the implementation of the Baumgarte–Shapiro–
Shibata–Nakamura–Oohara–Kojima (BSSNOK, or just BSSN) formulation, represented
by the class bssn that extends tpo. From now on, we will refer to the bssn class as
representing also the tpo class, unless explicitly stated otherwise.

idbase is also an abstract class meant to contain all data and procedures shared by any
type of ID. Specific IDs are to be represented by types that extend idbase. idbase defines
the interface between all types of ID and the particles and tpo objects; this means that
any variable or procedure that depends explicitly on some ID properties and is needed by
the particles or tpo classes, must be a member of idbase. In the case of a procedure, if
its implementation is the same for all possible physical systems, it should be implemented in
a submodule of module idbase, and be a non-deferred (possibly non-overridable) member
of idbase. If the implementation depends on the specific physical system, the procedure
should be deferred to the extended type, and the implementation should be contained in a
submodule of the module containing the declaration of the relevant extended type.

The classes particles and bssn are very much decoupled—in the sense that they never
refer to each other internally (though some methods of bssn need an argument of type
particles: for example, the one that computes the constraint violations on the mesh using
the hydro data mapped from the particle distribution)—and orthogonal to each other—in
the sense that they accomplish independent tasks—so that SPHINCS_ID can produce only
SPH ID using only the particles class, or only BSSN ID using only the bssn class, or
both. This is decided by the user by setting up the parameter files appropriately, as we
will see in subsection 3.4.

As of v2.0, SPHINCS_ID has 4 programs: sphincs_id_v2.0.x,
convergence_test_v2.0.x, construct_newtonian_binary.x and write_par_eos_v2.0.x.
The first one produces SPH and/or BSSN ID for SPHINCS_BSSN or MAGMA2; the second one
computes a Cauchy convergence test using the Hamiltonian and momentum contraints; the
third one produces SPH and BSSN ID for SPHINCS_BSSN or MAGMA2, using data produced

2

by the TOV solver within SPHINCS_BSSN to place two TOV stars (neutron stars or white
dwarfs) on an orbit determined by the Newtonian 2-body problem (conical section: ellipse,
parabola or hyperbola; not straight line); the fourth one generates the parameter file
par_eos.dat for single and piecewise polytropes to be used when running the LORENE
executable init_bin to produce two TOV stars, as described in subsection 3.1.

The repository of SPHINCS_ID organizes the files in directories, each one containing
a README.md file describing its content. Here follows a list of the directories, with a
description of what they contain.

i. config contains the parameter files (or configuration files) needed by the programs
provided by SPHINCS_ID

ii. mod is an empty directory needed during compilation. The *.mod files produced
during compilation will be placed in it

iii. res contains resources related to SPHINCS_ID. Currently it stores files needed to
produce the documentation with FORD (see below), and the User Manual.

iv. src contains the source files

v. tools contains scripts used to compile SPHINCS_ID, and the Project File needed by
FORD to produce the documentation (see below)

1.2 Documentation of SPHINCS_ID

SPHINCS_ID is documented using FORD, which can be found at
https://github.com/Fortran-FOSS-Programmers/ford,

together with instructions on how to install and use it. Once FORD is installed, go to the
root directory of SPHINCS_ID and type

ford tools/documentation_sphincs_id.md
in the SPHINCS_ID directory. This will generate the documentation in the subdirectory
doc/. Open the file doc/index.html with any browser to consult the documentation.

The documentation is (temporarily?) hosted at
https://sphincsid.bitbucket.io.

2 Compilation of the codes

SPHINCS_ID v2.0 was compiled with and tested on:

i. GNU Fortran (gfortran) 10.2.1 20210110 and IFORT 19.1.0.166 20191121 compilers,
on the r3x machines of the Department of Astronomy, Stockholm University

ii. GNU Fortran (gfortran) 8.3.0 and IFORT 2021.2.0 20210228, on the Sunrise HPC
facility supported by the Technical Division at the Department of Physics, Stockholm
University [7]

2.1 Compiling LORENE

A fork of LORENE, extended by Francesco Torsello to comply with the needs of the SPHINCS
project, is needed to run SPHINCS_ID and can be found at

https://bitbucket.org/sphincsid/lorene/src/master/
The root directory contains a NOTICE file where a list of the modified and added source
files is given. This fork also includes the patch check_fopen_error.patch and a slightly

3

https://github.com/Fortran-FOSS-Programmers/ford
https://sphincsid.bitbucket.io
https://bitbucket.org/sphincsid/lorene/src/master/

different version of the patch x_axe_limits.patch from LORENE2 (the difference is that, in
the version needed by SPHINCS_ID, a parameter is hardcoded rather than being specifiable
in a parameter file). LORENE2 was developed by the developers of the Einstein Toolkit [8,
9], see

https://bitbucket.org/einsteintoolkit/lorene/src/master/dist/
Clone the repository wherever you prefer and set the environment variable $HOME_LORENE
to the chosen path. The installation of the fork of LORENE needed by SPHINCS_ID proceeds
in the same way as for the original LORENE, see the instructions at

https://lorene.obspm.fr/install.html
except that the user does not need to clone the original fork of LORENE, so the steps
reported at

https://lorene.obspm.fr/download.html
can be skipped.

Two files $HOME_LORENE/local_settings_r3x and $HOME_LORENE/local_settings_sunrise
are provided. Depending on the used host, the user should overwrite the file
$HOME_LORENE/local_settings with one of them, before starting the compilation (as ex-
plained in the instructions in the original LORENE website). The file $HOME_LORENE/local_settings_sunrise
was written by Mikica Kocic (member of the Technical Division at the Department of
Physics).

2.2 Compiling Kadath

A fork of the FUKA branch of Kadath, extended by Francesco Torsello to comply with the
needs of the SPHINCS project, is needed to run SPHINCS_ID and can be found at

https://bitbucket.org/sphincsid/kadath/src/master/
The root directory contains a NOTICE file where a list of the modified and added source
files is given. Clone the repository wherever you prefer and set the environment vari-
able $HOME_KADATH to the chosen path. The installation of this fork of Kadath, and of
FUKA, proceeds in the same way as for the originals, read $HOME_KADATH/README.md for
instructions (the user does not need to clone the original fork of FUKA, so skip that step in
$HOME_KADATH/README.md). The code in $HOME_KADATH/codes/bns_export was added to
Kadath by Francesco Torsello, and must be compiled in the same way as the other codes
in $HOME_KADATH/codes.

To compile Kadath and FUKA on Sunrise, use the scripts in
/cfs/home/pg/CHAP/compile-kadath-scripts/mpich

written by Mikica Kocic (member of the Technical Division at the Department of Physics),
and slightly modified by Francesco Torsello to compile also the code in
$HOME_KADATH/codes/bns_export. Follow the instructions in the README.md in the same
directory.

2.3 Compiling SPHINCS_ID

Modules and flavours. SPHINCS_ID v2.0 has several modules, possibly with several
submodules. A “flavour” of SPHINCS_ID is defined as a successfully compiling set of its
modules. SPHINCS_ID v2.0 has 4 flavours: full , lorene, fuka, and interpolate. The full
flavour includes all the modules and links SPHINCS_ID to the LORENE and Kadath libraries;
the lorene flavour includes only the modules needed to use the LORENE ID and generic ID
on a Cartesian, uniform grid, and links SPHINCS_ID to the LORENE library; the fuka flavour
includes only the modules needed to use the LORENE ID and generic ID on a Cartesian,
uniform grid, and links SPHINCS_ID to the Kadath library; the interpolate flavour includes

4

https://bitbucket.org/einsteintoolkit/lorene/src/master/dist/
https://lorene.obspm.fr/install.html
https://lorene.obspm.fr/download.html
https://bitbucket.org/sphincsid/kadath/src/master/

only the modules needed to use a generic ID on a Cartesian, uniform grid.
The reason to allow for different flavours is that SPHINCS_ID should not necessarily be

dependent on an ID solver to be compiled. For example if, in the future, LORENE won’t be
used anymore, there won’t be any need to compile the modules related to it, nor to link
SPHINCS_ID to the LORENE library.

The user decides which flavour to use by setting the appropriate parameters before the
compilation, as described in the next paragraph.

Compilation. SPHINCS_ID uses procedures and variables defined in SPHINCS_BSSN, hence
it must be linked to it. As of v2.0, SCons is used to for the building process; a SConstruct
file is provided, which allows compilation with both the Intel and GNU Fortran compilers
(gfortran, ifort). If SCons needs to be installed, follow the instructions at

https://scons.org/doc/production/HTML/scons-user/index.html.
As the first step to compile SPHINCS_ID, create a new directory and set the environment

variable $HOME_SPHINCS to its path. Next, clone SPHINCS_ID and SPHINCS_BSSN into such
directory with the commands:

git clone git@bitbucket.org:sphincsid/sphincs_id.git SPHINCS_ID
git clone git@bitbucket.org:SKR17/sphincs_repository.git SPHINCS_DynMetric
git clone git@bitbucket.org:SKR17/bssn_with_peter_diener.git BSSN

The names and the placement of these repositories can be changed by appropriately chang-
ing the paths in the SConstruct and src/SConscript files. We suggested to place the
three repositories in the same directory since they are logically (and literally) linked.

SPHINCS_BSSN needs to be compiled first. This will produce the library which SPHINCS_ID
links to. Using a Linux OS, the user compiles SPHINCS_BSSN by going to

$HOME_SPHINCS/SPHINCS_DynMetric/SPHINCS_BSSN,
modifying SConstruct to specify the local environment, and typing the command scons.
Once the compilation is completed, the user should find a directory lib with the library
inside it. Next, SPHINCS_ID is compiled by going to

$HOME_SPHINCS/SPHINCS_ID,
modifying SConstruct to specify the local environment, and typing the command scons.
Note that the SConstruct file for SPHINCS_ID refers to the src/SConscript file, and the
latter uses the *.py files in tools/. Hence, the user may need to modify some of them
as well, when specifying the local environment. The object files will be placed in the
newly-created build directory, and the executable files in the newly-created bin directory.

A number of options may be specified when compiling SPHINCS_ID:

i. flavour = {full_flavour = 1, lorene_flavour = 2, fuka_flavour = 3,
interpolate_flavour = 4}
The default flavour is full_flavour. Note that full links SPHINCS_ID to SPHINCS_BSSN,
LORENE and Kadath libraries, and other libraries needed by LORENE (fftw3, blas,
etc.); lorene links to the SPHINCS_BSSN and LORENE libraries and relative dependen-
cies; fuka links to the SPHINCS_BSSN and FUKA libraries; interpolate only links to
SPHINCS_BSSN.

ii. debug = {TRUE, FALSE}
If TRUE, compile SPHINCS_ID with debug flags and link to the LORENE and FUKA debug
libraries. The default is FALSE.

iii. fortran_compiler = {gfortran, ifort}. The default is ifort.

iv. compilers = {gnu, intel}. The option compilers sets the Fortran compilers, and,
if used, it overrides the options fortran_compiler.There is no default value.

5

https://scons.org/doc/production/HTML/scons-user/index.html

v. verbose = {TRUE, FALSE}
If TRUE, prints additional information during compilation. The default is FALSE.

vi. host = {r3x, Sunrise}
The machine on which SPHINCS_ID is compiled. Right now, only two hosts are
supported. The host is automatically detected during compilation, and if it is not
one of the two supported ones, the configuration for r3x is used. The user can add
other options referring to the local host and environment.

All the defaults can be changed in SConstruct, so it is not needed to specify the options
at each compilation. An example of compilation command with some options specified is:
scons flavour=lorene_flavour fortran_compiler=ifort verbose=TRUE debug=TRUE

3 Using the codes

3.1 Producing binary neutron star spectral initial data with LORENE

Read the reference [3] for a rather complete description of what LORENE does and how, to
produce BNS ID.

LORENE provides two codes that can be used to produce BNS ID: Bin_star and
Binary_star. Our experience is that Bin_star converges more easily to the solution. The
codes are located at

$HOME_LORENE/Codes/Bin_star
$HOME_LORENE/Codes/Binary_star

From now on, we will consider Bin_star only. This code has been modified to comply
with the needs of the SPHINCS project. Two executables are needed to produce BNS
ID, init_bin and coal_seq, as described below. In order to produce them, go to the
directory $HOME_LORENE/Codes/Bin_star and type make init_bin and make coal_seq.
After that, they can be found in the same directory.

All the parameter files that will be mentioned in this section, and two examples of
tabulated EOS that can be used with LORENE (one in LORENE format and one in CompOSE
format), can be found in the directory

$HOME_LORENE/Codes/Bin_star/Parameters/examples
of the repository

https://bitbucket.org/sphincsid/lorene/src/master/

Step 1: Producing two TOV stars. In order to produce the two TOV stars to be
used as the ID for the iteration that solves the constraints equations of General Relativity
(GR), the user needs the following files:

i. the executable init_bin

ii. the parameter files:

(a) par_grid1.d, par_grid2.d. These specify the multi-domain spectral grids (one
per star), namely:

i. the number of domains within a star (no more than 3)
ii. the number of domains outside the star

6

https://bitbucket.org/sphincsid/lorene/src/master/

iii. the inner radii of each domain in units of the radius of the star, the first
domain being a sphere and the others spherical shells; the last domain
is compactified and extends to infinity. The last domain inside the star
and the first domain outside the star should touch at the surface of the
star, meaning that the inner radius of the first domain outside the star
should be 1. It is desirable that the companion star is contained in a single
domain—better if not the compactified one.

iv. the number of Chebyshev coefficients in each domain in the r, θ, ϕ directions,
called nr, nt and np, respectively. These numbers determine the resolution
of the spectral expansion, so more accurate results are obtained by increasing
them. However, they have to be of the following form if using FFT991:

nt = 2n3m5ℓ + 1, with n ≥ 1, m, ℓ ≥ 0, 2n3m5ℓ ≥ 4, (1a)

np = 2n3m5ℓ, with n ≥ 1, m, ℓ ≥ 0, 2n3m5ℓ ≥ 4, (1b)

nr = 2n3m5ℓ + 1, with n ≥ 1, m, ℓ ≥ 0, 2n3m5ℓ ≥ 4, (1c)

and of the following form if using FFTW3:

nt = 2n+ 1, with n ≥ 2, (2a)
np = 2n, with n ≥ 2, (2b)
nr = 2n+ 1, with n ≥ 2, (2c)

The user chooses FFT991 or FFTW3 in the file $HOME_LORENE/local_settings.
nt and np are the same for each domain, and nr can be different for each
domain. The last domain inside the star and the first domain outside the
star should have the same nr, since the code smoothens the fields at the
surface of the star, and in our experience the code complained during the
smoothening if nr were different. See

https://lorene.obspm.fr/Refguide/FFT991_2admissible__fft_8C_source.html
https://lorene.obspm.fr/Refguide/FFTW3_2admissible__fft_8C_source.html

(b) par_eos1.d, par_eos2.d. These specify the EOS for each star, which can be a
single or piecewise polytrope, or tabulated. See the LORENE documentation at

https://lorene.obspm.fr/Refguide/classLorene_1_1Eos.html
(and references to documentation therein) for details on how to specify the
parameters in these files. The executable write_par_eos.x in SPHINCS_ID v2.0
produces this parameter file for single and piecewise polytropes. As mentioned
before, examples of parameter files and tabulated EOS can be found in the
directories

$HOME_LORENE/Codes/Bin_star/Parameters/examples/tov_stars/par_eos_examples/
$HOME_LORENE/Codes/Bin_star/Parameters/examples/tabulated_eos_examples/

of the repository
https://bitbucket.org/sphincsid/lorene/src/master/

(c) par_init.par. This parameter file specifies if the computation should be
relativistic or Newtonian (choose relativistic if you want to use the ID with
SPHINCS_ID), the separation in km between the centers of the stars (this can be
left to 100km since the separation for the real BNS is specified later in another
parameter file for the executable coal_seq, discussed in the next paragraph),
the central enthalpies of the stars (which, together with the EOS, determine

7

https://lorene.obspm.fr/Refguide/FFT991_2admissible__fft_8C_source.html
https://lorene.obspm.fr/Refguide/FFTW3_2admissible__fft_8C_source.html
https://lorene.obspm.fr/Refguide/classLorene_1_1Eos.html
https://bitbucket.org/sphincsid/lorene/src/master/

mass and radius), the rotational state of the BNS (only the irrotational and
corotational state can be specified, and they have to be the same for both stars),
and if the conformal flatness assumptions has to be used (use it if you want to
use the ID with SPHINCS_ID).

The output of init_bin, in addition to files for diagnostics, is the binary file ini.d. This
is the file needed to run the next code, which produces the BNS ID.

Usually, one would like to produce TOV stars with a given (gravitational or baryonic)
mass. The only way to do that in init_bin, at present, is to proceed by trial and error by
changing the values of the central enthalpies. An efficient way is to find the desired mass
using a low number of Chebyshev coefficients, so that the TOV equations are integrated
very quickly; once the desired mass is found, the number of Chebyshev coefficients can be
set to a higher value to get a more accurate solution.

Step 2: Using the TOV stars as ID to produce a BNS. Having the two TOV
stars, the next step is to produce a sequence of BNS with different separations between
the centers of the stars, with the possibility to specify desired baryonic masses, or desired
gravitational masses (the gravitational masses in the binary systems, not for the isolated
stars). The possibility to specify desired gravitational masses is not present in the original
version of LORENE. Besides, the original version of LORENE allows specifying the initial
separation, and then proceeds by reducing it by 5km until it finds a solution (usually, the
closer the stars, the hardest it is for LORENE to converge). In our fork of LORENE, it is
possible to specify the initial and final separations in units of 100km, and the separation
step in km.

In order to solve the constraint equations of GR for a sequence of BNS configurations,
the user needs the following files:

i. the executable coal_seq

ii. the binary file ini.d produced by the LORENE executable init_bin

iii. the parameter file parcoal.d. This specifies the name of the binary file containing
the two TOV stars (ini.d is the default), the initial and final separations between
the centers of the stars, the separation step, the desired baryonic masses and desired
gravitational masses, the relaxation parameters and other parameters steering the
iteration.

It is possible to ask LORENE to converge to a BNS having the required values for the baryonic
masses of the stars, or the required values for the gravitational masses of the stars. If the
baryonic masses are to be specified, set the parameters mass_g_des1 and mass_g_des2 to
0, and the parameters mbar_voulue[0] and mbar_voulue[1] to the desired values in solar
masses. If the gravitational masses are to be specified, set mass_g_des1 and mass_g_des2
to the desired values, and mbar_voulue[0] and mbar_voulue[1] to the first guesses for
the baryonic masses that would correspond to the desired value of the gravitational masses.
Usually, such first guesses are 0.2M⊙ to 0.3M⊙ larger than the desired gravitational
masses.

Regarding the relaxation parameters and the other parameters steering the iteration,
unfortunately there is not much to say other than one has to find a set of parameters
that leads to convergence, by trial and error. Parameters that worked for many cases are
provided in the directory

$HOME_LORENE/Codes/Bin_star/Parameters/examples/bns/

8

of the repository
https://bitbucket.org/sphincsid/lorene/src/master/
The output of coal_seq, in addition to files that contain information and diagnostics,

are binary files called resu_*.d, where the * stands for the separation between the centers
of the stars in nits of 10km. These are the files needed by SPHINCS_ID as input.

Using the CompOSE database with LORENE and SPHINCS_ID. The CompOSE database
[10] provides EOS that can be used with LORENE. See the section “Detailed description” at

https://lorene.obspm.fr/Refguide/classLorene_1_1Eos__CompOSE.html
to see how to use the CompOSE tables with LORENE.

Note that, in general, the downloaded tables do not provide data in β-equilibrium.
This equilibrium is usually satisfied (or assumed to be satisfied) by a cold neutron star, or
by two neutron stars in a binary system, but sufficiently far from each other—the latter
being usually the system described with the BNS ID. In order to produce β-equilibrated
data, the user can use the CompOSE software, which can be downloaded from

https://compose.obspm.fr/software
https://compose.obspm.fr/manual

We refer to Section 7.5 of the CompOSE Manual v3.00, for the instructions on how to use
the software; also, the software itself gives guidelines on how to use it, during its own
execution. The β-equilibrated EOS are stored in the files with extensions *.nb.ns and
*.thermo.ns. The first contains the values of the baryon number density in fm−3 (which
is the independent variable), the second contains several thermodynamical quantities as
functions of the baryon number density. We refer to Section 4.2.2 of the CompOSE Manual
v3.00 for more details on such thermodynamical quantities.

The original version of LORENE, as of 2023-04-21, reads in the files with extension *.nb
and *.thermo, that is, those that are not β-equilibrated. The fork of LORENE modified to
comply with the needs of the SPHINCS project, instead, reads in the files with extensions
*.nb.ns and *.thermo.ns.

When producing ID for SPHINCS_BSSN with SPHINCS_ID using an ID file that needs
a CompOSE tabulated EOS, the global path to the file par_eos*.d is needed to construct the
EOS within LORENE. This path can specified in the parameter file sphincs_id_parameters.dat
for SPHINCS_ID (note that, if this path must be used by SPHINCS_ID, the parameter
use_eos_from_id must be set to .FALSE.).

3.2 Producing differentially rotating star spectral initial data with LORENE

Read [11] and references therein, for a description of what LORENE does and how, to produce
DRS ID.

LORENE provides the code rotdiff to produce DRS ID, located at
$HOME_LORENE/Codes/Rot_star

The code has been extended to comply with the needs of the SPHINCS project. The
executable rotdiff is needed to produce the ID, and can be obtained by going to the
directory $HOME_LORENE/Codes/Rot_star and type make rotdiff. After compilation, the
executable is found in the same directory.

All the parameter files that will be mentioned in this section, and two examples of
tabulated EOS that can be used with LORENE (one in LORENE format and one in CompOSE
format), can be found in the directory

$HOME_LORENE/Codes/Rot_star/Parameters/Rotdiff
of the repository

https://bitbucket.org/sphincsid/lorene/src/master/

9

https://bitbucket.org/sphincsid/lorene/src/master/
https://lorene.obspm.fr/Refguide/classLorene_1_1Eos__CompOSE.html
https://compose.obspm.fr/software
https://compose.obspm.fr/manual
https://bitbucket.org/sphincsid/lorene/src/master/

In order to produce a differentially rotating star (DRS), the user needs the following
files:

i. the executable rotdiff

ii. the parameter files:

(a) par_eos.d. Same as for the BNS.

(b) parrotdiff.d. This specifies: the multi-domain spectral grid for the star, as
par_grid1.d does for the BNS; the relaxation and steering parameters, as
parcoal.d for the BNS, but with options specific to the DRS.

3.3 Producing binary neutron star spectral initial data with FUKA

Read the reference [5] for a complete description of what FUKA does.
To use the FUKA solvers, follow the instructions in the README.md files at:
https://bitbucket.org/fukaws/fuka/src/fukav2/codes/FUKAv2_Solvers/NS/
https://bitbucket.org/fukaws/fuka/src/fukav2/codes/FUKAv2_Solvers/BNS/ which

can be found also in the local clone of (our fork of) FUKA, in the same directories.

3.4 Producing initial data with SPHINCS_ID

To produce SPH and BSSN ID with SPHINCS_ID, for SPHINCS_BSSN or MAGMA2, the user
needs the following files:

i. the executable sphincs_id_v2.0.x

ii. the file containing the ID (whose location can be specified in the parameter file
sphincs_id_parameters.dat, described below). The file must be renamed so that
sphincs_id_v2.0.x knows what kind of data it stores; the first 5 characters of the
name have to be one of these:

(a) BNSLO: binary neutron star produced with LORENE

(b) DRSLO: differentially rotating star produced with LORENE

(c) BNSFU: binary neutron star produced with FUKA

(d) EJECT: generic data on a Cartesian grid (the name EJECT will be deprecated;
the first used data on a Cartesian grid was describing an ejecta, hence the name;
it will be updated in a later version)

Regarding the specific solvers:

(a) When using LORENE, the binary file resu_*.d produced by the LORENE executable
coal_seq is the needed one

(b) When using FUKA, the pair of files *.info and *.dat produced by the FUKA
executable solve from the BNS code, are the needed ones. Note that they must
have the same name. In addition, the executable
$HOME_KADATH/codes/bns_export/bin/Release/export_bns
must be placed in the same directory as the ID files. This executable is
called by sphincs_id_v2.0.x since Kadath is not thread-safe and cannot read
the ID using OpenMP. Since sphincs_id_v2.0.x uses OpenMP, it cannot
be linked to Kadath to read the ID in parallel. The current solution is that

10

https://bitbucket.org/fukaws/fuka/src/fukav2/codes/FUKAv2_Solvers/NS/
https://bitbucket.org/fukaws/fuka/src/fukav2/codes/FUKAv2_Solvers/BNS/

sphincs_id_v2.0.x calls the executable export_bns, which reads the ID in par-
allel using MPI and prints it to ASCII files, one file per MPI rank. SPHINCS_ID
then reads the data from these files in parallel using OpenMP and deletes the
files afterwards.

(c) When using data on a Cartesian grid, the file with the data is the needed
one. The currently supported format (developed to read the first used data
describing an ejecta) consists of 8 columns containing: (x, y, z, ρ, u, vx, vy, vz).
For clarity: the order matters; ρ is the baryon mass density; u is the specific
internal energy; v⃗ is the spatial part of the fluid 4-velocity with respect to the
Eulerian observer. A flat metric is assumed currently, but this can be easily
changed by implementing the reading of more columns.

iii. the parameter files:

(a) SPHINCS_fm_input.dat, needed in SPHINCS_ID to specify what SPH kernel and
EOS to use

(b) gravity_grid_parameters.dat, needed to specify the mesh features. For
example, how many refinement levels should there be, how big should they be,
what resolution should they have, and so on

(c) bssn_parameters.dat, needed to specify the finite-differencing (FD) order and
the BSSN parameters

(d) sphincs_id_parameters.dat, needed to steer the execution of
SPHINCS_ID. For example, in this parameter file the user specifies: How many
BNS are to be set up? Which binary files containing the ID are to be used, and
where are they stored? Which particle distribution to set up for each BNS?
Should the particle positions be read from a formatted file? Should the SPH
ID be set up, the BSSN ID, or both? How many output files to print? Where
should they be stored? Should the constraint violations be computed? And
other features

(e) sphincs_id_particles.dat, needed to specify parameters concerning the par-
ticle distributions. For example, in this parameter files the user specifies: How
should the particles be placed within the stars? Should the Artificial Pres-
sure Method (APM) be applied to them? Should the electron fraction Ye be
computed from the data provided by the CompOSE database? And other features

Note that only (d) and (e) are specific to SPHINCS_ID. (a), (b) and (c) are used by both
SPHINCS_BSSN and SPHINCS_ID. The parameter files (d) and (e) contain descriptions and
guidelines on how to set each parameter they contain.

3.4.1 Producing initial data for two TOV stars in a Newtonian binary system,
with construct_newtonian_binary.x

Read [12, Ch. 3] and [13, Ch. III] for the formulation of the Newtonian 2-body problem,
used in construct_newtonian_binary.x to produce the ID.

To produce SPH and BSSN ID with construct_newtonian_binary.x, for SPHINCS_BSSN
or MAGMA2, the user needs the following files:

i. the executable construct_newtonian_binary.x

ii. the files containing the SPH and TOV ID for the TOV stars (whose location can
be specified in the parameter file newtonian_binary_parameters.dat, described
below). Note that the file TOV.00000, not the file BSSN_vars.00000, is needed

11

iii. the parameter files:

(a) newtonian_binary_parameters.dat, where: the location and names of input
and output file are specified; the periastron parameter (which determines the
periastron; see the parameter file itself), the initial distance in km between the
stars, and the eccentricity of the orbit, are specified

(b) gravity_grid_parameters.dat, needed to specify the mesh features. For
example, how many refinement levels should there be, how big should they be,
what resolution should they have, and so on

3.5 Running a Cauchy convergence test

To run a Cauchy convergence test for the Hamiltonian and momentum constraints with
SPHINCS_ID, the user needs the following files:

i. the executable convergence_test_v2.0.x

ii. the same parameter files as for SPHINCS_ID. The parameter file sphincs_id_parameters.dat
has three parameters used only by convergence_test_v2.0.x. They are numerator_ratio_dx,
denominator_ratio_dx and ref_lev. The latter specifies the refinement level used
to do the Cauchy convergence test. The first two define the pairwise ratio (> 1)
between the spacings of the three meshes used in the Cauchy convergence test (the
numerator and denominator are individually used in the code; that is why they
are separate parameters). The first spacing δ1 is determined by the parameters
specified in gravity_grid_parameters.dat. The others are δ2 = δ1/r < δ1 and
δ3 = δ2/r < δ2, with r := numerator_ratio_dx/denominator_ratio_dx > 1. If the
parameters in sphincs_id_parameters.dat and sphincs_id_particles.dat are
set to use a SPH particle distribution, the Cauchy convergence test can be done also
using the hydro data mapped from the particles to the mesh.

3.6 Producing the parameter file par_eos.d for LORENE

To produce the parameter file par_eos.d for LORENE, for single and piecewise polytropic
EOS, run the executable write_par_eos.x. No parameter files are needed.

References
1S. Rosswog and P. Diener, “SPHINCS_BSSN: A general relativistic Smooth Particle
Hydrodynamics code for dynamical spacetimes”, Class. Quant. Grav. 38, 115002 (2021).

2S. Rosswog, “The Lagrangian hydrodynamics code magma2”, Monthly Notices of the
Royal Astronomical Society 498, 4230–4255 (2020), https://doi.org/10.1093/mnras/
staa2591.

3E. Gourgoulhon, P. Grandclement, K. Taniguchi, J.-A. Marck, and S. Bonazzola, “Quasiequi-
librium sequences of synchronized and irrotational binary neutron stars in general rela-
tivity: 1. Method and tests”, Phys. Rev. D 63, 064029 (2001).

4LORENE: Langage Objet pour la RElativité NumériquE, https://lorene.obspm.fr/
(visited on 03/29/2023).

5L. J. Papenfort, S. D. Tootle, P. Grandclément, E. R. Most, and L. Rezzolla, “New
public code for initial data of unequal-mass, spinning compact-object binaries”, Physical
Review D 104, 10.1103/physrevd.104.024057 (2021), https://doi.org/10.1103%
2Fphysrevd.104.024057.

12

https://doi.org/10.1088/1361-6382/abee65
https://doi.org/10.1093/mnras/staa2591
https://doi.org/10.1093/mnras/staa2591
https://doi.org/10.1093/mnras/staa2591
https://doi.org/10.1093/mnras/staa2591
https://doi.org/10.1103/PhysRevD.63.064029
https://lorene.obspm.fr/
https://doi.org/10.1103/physrevd.104.024057
https://doi.org/10.1103/physrevd.104.024057
https://doi.org/10.1103/physrevd.104.024057
https://doi.org/10.1103%2Fphysrevd.104.024057
https://doi.org/10.1103%2Fphysrevd.104.024057

6Frankfurt University/Kadath (FUKA) Initial Data solver, https://kadath.obspm.fr/
fuka/# (visited on 03/29/2023).

7HPC Sunrise cluster of the Department of Physics, Stockholm University, https://it.
fysik.su.se/hpc/index.html (visited on 03/29/2023).

8R. Haas, C.-H. Cheng, P. Diener, Z. Etienne, et al., The Einstein Toolkit, version The "So-
phie Kowalevski" release, ET_2022_11, To find out more, visit http://einsteintoolkit.org,
Oct. 2022, https://doi.org/10.5281/zenodo.7245853.

9F. Löffler, J. Faber, E. Bentivegna, T. Bode, P. Diener, R. Haas, I. Hinder, B. C. Mundim,
C. D. Ott, E. Schnetter, G. Allen, M. Campanelli, and P. Laguna, “The Einstein Toolkit: A
Community Computational Infrastructure for Relativistic Astrophysics”, Class. Quantum
Grav. 29, 115001 (2012).

10CompOSE: CompStar Online Supernovae Equations of State, https://compose.obspm.
fr/ (visited on 03/29/2023).

11E. Gourgoulhon, P. Haensel, R. Livine, E. Paluch, S. Bonazzola, and J. A. Marck,
“Fast rotation of strange stars”, 10.48550/ARXIV.ASTRO-PH/9907225 (1999), https:
//arxiv.org/abs/astro-ph/9907225.

12H. Goldstein, C. Poole, and J. Safko, Classical Mechanics (Addison Wesley, 2002).
13L. Landau, E. Lifshitz, J. Sykes, and J. Bell, Mechanics: Volume 1, Course of theoretical

physics (Elsevier Science, 1976).

13

https://kadath.obspm.fr/fuka/#
https://kadath.obspm.fr/fuka/#
https://it.fysik.su.se/hpc/index.html
https://it.fysik.su.se/hpc/index.html
https://doi.org/10.5281/zenodo.7245853
https://doi.org/doi:10.1088/0264-9381/29/11/115001
https://doi.org/doi:10.1088/0264-9381/29/11/115001
https://compose.obspm.fr/
https://compose.obspm.fr/
https://doi.org/10.48550/ARXIV.ASTRO-PH/9907225
https://doi.org/10.48550/ARXIV.ASTRO-PH/9907225
https://arxiv.org/abs/astro-ph/9907225
https://arxiv.org/abs/astro-ph/9907225

	Introduction
	Description of SPHINCS_ID
	Documentation of SPHINCS_ID

	Compilation of the codes
	Compiling LORENE
	Compiling Kadath
	Compiling SPHINCS_ID

	Using the codes
	Producing binary neutron star spectral initial data with LORENE
	Producing differentially rotating star spectral initial data with LORENE
	Producing binary neutron star spectral initial data with FUKA
	Producing initial data with SPHINCS_ID
	Producing initial data for two TOV stars in a Newtonian binary system, with construct_newtonian_binary.x

	Running a Cauchy convergence test
	Producing the parameter file par_eos.d for LORENE

